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1.” expansion for the Yukawa potential revisited? 
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Jadavpur.  r a l cu t t a  700031, India 

Received 9 October I984  

Abstract. I n  a recent paper,  Xloreno and  Zepeda have applied the 1’1; expansion to 
obtain an  approximate analytic formula for the ground state energy of a panicle  bound  
by a Yukawa potential. Using the method of Mlodinow and Shatz we caiculate the energies 
of the ground state and the first excired state of the system to shot+ that the results pro\, ided 
by the i i N  expansion are identical with tiiose obtained by applqing either the analytic 
perturbation theory or the hypenir ia l  equations Hith the Hellman-Feynman theorem. .Also 
an approximate anal>t ic  formula for the ground state energq is proposed. 

1. Introdiictiori 

Interest in the I,” expansion has continued unabated since the work of Ferrel and  
Scalapino (1974) on the anharmonic oscillator. The meth.od has drawn considerable 
attention for the following reasons. Firstly, the expansion,. albeit semiclassical, works 
in many cases extremely well. For the Coulomb potential, in particular, the method 
!ooks all the more attractive, for i t  gives 211 exact result when summed to infinite order 
(Mlodinow and Papanicolaou 1980. Van Der Merwe 1983). However, the mathematicai 
[oundation of the scheme remains elusive and therefore requires critical investigations 
(Mlodir,ow and Papanicolaou 1980, 1981, Papanicolaou 1981 ) .  Secondly, the 
expansion is essentially non-perturbative and hence can possibly provide a satisfactory 
way of solving the strong coupling problems ( ‘ t  Hooft 1974a, b, Witten 1979) for which 
the usual perturtative treatments fail. Besides these rep.sons, the formalism has a 
specid appeal because it involves only :ilgebraic equations which are easier to handle. 

Recently, Moreno and Zepeda (1984, hereafter referred to as M Z )  have applied the 
1,/N expansion to the Schrodinger equation with a Yukawa potential. Following a 
slightly different method to that of Mlodinow and Shatz (1982, hereafter referred to 
as MS)  they nave obtained an approximate analytic formula for the groTind state energy 
of the system which is in very good agreement with the numerical results. However, 
the approximation they have invoked appears (a t  least to the present author) to be a 
bit artificial and that their approximation rea!ly works, they themselves agree, is rather 
fortuitous. In the present paper we employ the method of M S  in a straightforward 
manner to calculate the first fourteen terms of the expansion for the ground state 
energy. We also perform calculatims for the first excited state (2s) .  The main objective 
is to show that the results which are provided by the 1 / N expansion are identical with 
those obtained by using the analytic perturbation theory (McEnnen ef a1 1976) or the 
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hypervirial equations with the Hellman-Feynman theorem (Grant and Lai 1979). We 
also propose an approximate analytic formula for the ground state energy which gives 
fairly accurate results. 

2. The method 

2.1. Zeroth-order approximation 

The radial part of the N-dimensional Schrodinger equation (in units m = h = 1 )  is 
given by 

2 r2 

which on substituting R ( r )  = r - 'N-" '2  u ( r )  reduces to 

_ -  1 - d' U ( r ) + k 2 ( i i - l / k i i l - 3 / k )  
2 dr' 8 r 2  

where P( r )  = V (  r ) /  k', k = N + 21. 
Following the method of M Z  we write for the Yukawa potential in N dimensions 

V ( r )  = - ( u / r )  e x p [ - ( 9 b / ~ ' ) r ] ,  

which when plugged in (2) leads for 1=0 to 

1 d2 [ ( 1  - 1/7:: - 3 / k )  9b 
-- 2 - -u ( r )+  dr2 k 2  -'exp( r - s r ) ] u ( r )  = E u ( r ) ,  ( 3 )  

where 6 = a / k ' .  In the limit of large k (N+ E), the energy eigenvalue to leading 
order is given by 

E, = k 'E ' -* '= k ' ( l / 8 r i - 6 / r 0 ) ,  ( 4 )  

r,= 1 /46  (5) 

( 6 )  

where r, is to be obtained by minimising the potential ( 1 / 8 r 2  - a'/ r )  which then yields 

and 
E'-2 '  = -26'. 

2.2. Higher-order corrections to the ground state energy 

Quantum fluctuations around the classical minimum rn can be incorporated in the 
higher-order corrections for which we define x = r - r,. Assuming uO( r )  = exp( 4,(x)) 
for the ground state wavefunction, we obtain from ( 3 )  

-$( d;(x) + db2(x)) + k 2  V,,(X) + ( - i k  +~)F>(x) + (9b )G 

a'r3+ . . . =  8,, 1 ( 9 b ) 4  
6 r 2 ( x )  -- - 6 r ( x ) + -  - 1 (96)' 1 ( 9 b ) 2  

2 !  k 2  3 !  k4 4 !  k6 
_ -  - 

where 
V e ~ (  x) = 1 / 8 r'( x )  - 6 /  r(  x )  + 2 Z 2 ,  
8 - En-  k2El-" 

0 -  

( 7 )  
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( 9  b )  n!  2+1 

( n / 2 +  I ) !  
+ ( - l ) n ' *  &,"I2 

Eo being the ground state energy and 4 ' (x )  and +"(x )  represent respectively the first 
and second derivates of d ( x )  with respect to x.. We next substitute the expansions 

n > 0. 
=O when n is odd 

and 

in ( 7 )  which then reads 

1 ( 9 b ) 2  1 ( 9 b ) 3  
2 !  k 2  3 !  k4 

+ ( -  $ k  + i)r'(x) + ( 9 6 ) ;  -- - G r ( x )  +- - i r 2 (  x )  

( 1 3 d )  

Since the effective potential Ve,(x) vanishes at the minimum ( r  = T O ) ,  we have for the 
higher-order corrections to the ground state energy 

(O) ,  ( 1 4 ~ )  
= -ir;2-idk-l) 

E ~ ' = i r , 2 - i q 5 ~ ' ( 0 )  - i+r" (O)+(9b)6 ,  ( 1 4 ~  

E;'= -;db""(o) -; 1 ~ ; " ' (o )~b" - " ' ( o )  n 

m=O 

2.3. Higher-order corrections for the first excited state (2s) 

Defining as before x = r - ro and assuming that the wavefunction for the first excited 
state is of the form 

w l ( r )  = (x -  c)  exp(4 , (x) ) ,  
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we obtain from (3)  

- ;( 4 r ( x )  + dJ {' ix 1 ) (  Y - c 1 - 4; ( x )  + [ k' V,,,( x )  + ( - k + i )  r-'( x ,]( x - c )  

1 (9b )3  
i r ( x ) + -  T - u r 2 ( x )  

1 i9b)* + (9b ) i - - -  ( 2! k' 3 !  k 

( x  - c )  = ( x  - c )  ZI , 1 (9b) '  
4! kb  

-- - 

where V, , (x j  is given by ( 8 ) ,  and 

E ,  being the energy of the first excited state. We now make the following expansions 

i 18) 

and substitute t5ese in ( 15)  to get 

1 ( 9 k ~ ) ~  
i r * ( x )  -- - i r ( x ) + -  - 4! k6 i r 3 ( x ) + . .  . 

1 (9b)' 
3 !  k4 

Again equating the terms of same order in k we generate a set of recurrence relations 
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m = I  \ p = - l  

The above equations are now to be solved to obtain the higher-order corrections to 
the energy of the first excited state. 

3. Results and discussions 

3.1. The ground state 

Solving (13) and (14), we obtain 

~ ; - I ’ ( x )  = -26+ 1/2r(x) ,  

db”(x) = -26, 

d r ’ ( x )  = -26- 1/2r(x),  

r$b>’(x) = -26, 

-2~?+[(96)~/4] r (x) ,  q5y’(x) = -26 -[(96)’/4]r(x), 

4 F J ( x )  = -26 -[(9L1)~/48i]r(x) -[(9b)3/ 12]rZ(x), 

4 f J ( x )  = -26 +[(9b)’/486]r(x) +[(9b)3/ 12]rZ(x), 

4;”( x )  = -26 + [ ( 9b)3/486]r( x )  + [( 9 b)4/ 1 926*]r( x )  

+ [ (9 b )‘/48 6]r2(x + [ (9 b I4/48]r3( x 1, 
r$b”( x )  = -26 - [(9b)3/486]r(x) - [3(9b)4/25662]r(x) 

- [3(9b)‘/64a‘]r2( x )  - [(9b)“/48]r3( x),  
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@A9 ’( x ) = - 2 6 + [ (9 b)4/ 3 846’1 r ( x  ) + [ (9 b)4/ 32 63 r2 ( x  ) - [ 7 (9 b ) ’/ 5 1 20i3] r ( x  ) (22) 

- [7(9b)5/ 128062]r2( x )  - [ 1 1 (9b)5/9606]r3(x) - [ (9b)’/240]r4((x), 

4;’”( x) = -26 + [ (9 b)4/966]r( x )  - [ (9 b)4/ 1 926]r2(x) + [ (9 b)5/3206’]r( x )  

+[(9b)5/8062]r2(x) +[29(9b)5/960i]r3(x)+[(9b)5/240]r4(x), 

~ ; I ” ( x )  = -26 - [ (9 b)4/ 1286’]r(x) + [9(96)’/5 12063]r(x) + [(9b)5/64062]r2( x) 

- [5(9b)5/ 1926]r’(x) +[ 1 1  (9b)6/2304064]r(x) + [ 1 1  (9b)6/576063]rz(x) 

+ [53(9b)6/ 1 1 5206’]r3(x) + [ 1 3(9b)‘/28806]r4( x) + [(9b)‘/ 1440]r5( x) ,  

4bi2’(x) = -26 + [ (9 b 14/ 7686’1 r( x )  - [ 3 (9 b) ’/ 320i3]r( x) - [ (9 b ) ’/ 406’1 r2( x )  

+ [7(9b)’/9606]r3(x) - [ 1 03(9b)3/7372864]r(x) 

- [ 1 03(9b)‘/ 1 8432ci3]r2(x) - [7(9b)6/480a“]r3(x) 

- [ 73 (9 b ) ‘/ 576061 r4( x ) - [ (9 b ) ‘/ 1 4401 r ’( x), 
and 

Eh-” = -462, Eho’ = -66’ + (9 b ) 6, Eh1) = -8 i2 ,  

E % ’ =  -106’- (9b)’/8, 

E r ’ =  -146’+(9b)3/966, 

E ;’ ’ = - 1 2 6’ + (9 b ) ’/ 8, 

E;S’= - 166’ - (9b)3/966, 

E r ’ =  -18a‘-(9b)3/966-(9b)4/3846’, 

Eh” = -206’+ (9b)3/966 + 3(9b)4/51262, 

E;” = -226’- (9b)4/76862 + 7(9b)5/ 102406’, (23) 

E r ’ =  -24~?’-(9b)~/  1926’- (9b)5/640i;7, 

E;’”’= -2662+(9b)4/2566’-9(9b)5/ 102n063- 1 1(9b)6/4608064, 

Ej)”’= -286’-(9b)4/ l536E2+3(9b)’/640i’+ 103(9b)‘/147456G4, 

E;”’= -306’+ terms of higher order than (9b)‘. 

The ground state energy is now given by 

9 1 2 1  -- I--+-+---+- :;’( 4k 2k’ k 3  2k4 4t‘)(E)‘  

7a’( 16 9 48 
+--. 1 +---+ 

IOk*\ 7 k  7 k 2  7k’ “‘)(E)5 
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Putting 9b /4a  = p and k = 3 in (24a) we finally obtain 
E l a 2 =  - 4 + 4 p - + p ? + x p 3 - U p 4 +  

9 7 7  729 6561 . . . . 
It is interesting to note that our result to this order is identical with that obtained 

earlier by Grant and Lai (1979a) by applying the hypervirial equations with the 
Hellman-Feynman theorem. The first four terms of (25) have also been obtained by 
McEnnen et a1 (1976) by using the analytic perturbation theory. It has also been 
shown by Lai (1979) that one can obtain the first four terms with the help of the 
Hellman- Feynman theorem alone. 

We now approximate the expression ( 2 5 )  by an infinite geometric series to obtain 
an analytic formula for the ground state energy of the system 

(26) E,,/ a = 2 - 4/ ( p + 3) .  

To show that the above approximate formula works well we compute 

E = -FEo/a' (26a)  

for different values of p in the range 0 S p c 1 and then compare our results with those 
of M Z  (table 1 ) .  M Z  have also shown that as one goes on increasing the number of 
terms while calculating the energy from (24a) ,  the result tends to deviate more and 
more from the actual numerical value when p approaches I .  This apparently raises a 
doubt about the very applicability of the expansion. However, when reckoned as a 
series in /3 this ticklish problem disappears, which suggests that though the method is 
non-perturbative in  the sense that i t  is not an expansion in the coupling constant, for 
the case of the Yukawa potential, p turns out to be a good perturbation parameter. 
This can be made evident by truncating the series for energy at p4, which then yields 
fairly accurate results for O S  p < 1 (table 1 ) .  

Table 1. Comparison of the values of E for 0 s  P S 1 as calculated from the approximate 
analytic formula of MZ ( c M L )  with those of the present work ( &,,rerent) .  Also the values of 
P to order p' a re  presented. 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

4.6270 
4.2187 
3.8350 
3.4735 
3.1321 
2.8269 
2.5026 
2.2105 
1.9322 
I ,666 I 

4.6276 
4.2 I88 
3.8352 
3.4743 
3.1339 
2.8125 
2.5084 
2.2204 
1.947 1 
1.6875 

4.627 I 
4.2 194 
3.8377 
3.4810 
3.1489 
2.841 7 
2.5603 
2.3062 
2.08 I7 

3.2. The first excited state 

Equations (21) can be solved for d:"', C'" '  and E:"' to give 

d'l" '(x) = -26+  1 /2 r (x ) ,  

c$',"(X) = -26, 4 :2 ) (x )  = 2 4  c$:3'(x) = -2;+[(9b)'/4]r(x), 

d \ " ' ( x )  = 2; - 1 / 2 r (x ) ,  
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d ;” (x )  = 26-(96)’/86+[(9b)’/4]r(x), 

4 \ ” ( x )  = -26 -[(96)’/486]r(x) -[(9b)3/ 12]r2(x), 

d\”(x) = 2 6 +  ( 9 b ) 2 / 8 6 +  (9b)’/486’-[5(9b)’/486]r(x) -[(9b)’/ 12]r2(x), (27a)  

d\”(x) = -26+  (9b)3/246’ - [7(9b)3 /486]r ( i )  +[(96)4/ 1926’]r(x) 

+ [ (9 b)4/486]r2( x )  + [ (9 b)‘/48]r3(x), 

q5i8’(x) = 26-[(96)’/166]r(x) -5(9b)4/51263+[7(9b)4/256a‘2]r(x) 

+ [5(9 b)4/646]r2(x) +[(9bI4/48]r3( x )  ; 
C‘1’=0, c”) = - 1/4;, cl’) = 0,  

C‘4’ = (9b) ’ / l28 i3 ,  c“ = 0,  

C‘ ”=  -3(9b)’/1286’-(9b)’/76864, CI7’= -(96)’/384i4, (27b) 

C “ ’ =  3(9b)’/ 1286’+(9b)’/38464+7(9b)4/819265, 

C‘9’  = (9b)’/ 128G4+ 7(9b)4/614465, 

E:-” = 462, E:’’= -66’+9b6, E : ’ )  = 8 i 2 ,  

E‘,’’= -106’- (9b)’/8, 

E\4’ = - 146’+ (9b)3/966, 

E \” = 126’ - 5(9b)‘/8, 

E\5’= 166’+ 13(9b)3/966, 
(27c) 

Ell6’= -186’+23(96)’/966 - (9b)4/38462, 

E :” = 206‘ + [ 1 1 (9 b)3/966] - 23 (9 b)4/ 5 1 26’, 

E;’’ = -226’ - 91 (9b)‘/768G2+ 7(9b)‘/ 102406’. 

The energy of the first excited state is now given by 

E I -  -k?E!-2’ + 2 k - ” E \ “ ’  
n = - I  

2a’ 4a’ 2a’( i) , h:( 13 23 1 1 )  
- - -~ +t--;.p-- I + -  pL+- I+-+,+? p3 

( k + l ) ’  k -  k k k -  k 

-”( 3k’ 1 +-+----;+. 4k 69 2k- 91 . .)p4+%(1+. . . I p s - .  

For N = 3 which is the dimension of interest, we finally obtain 

I a x 9 27 7 ? 9 P  . (29) E /  2 = - i + ? p _ L ! ? p 2 + % !  3 + ,  , ,  

It is immediately seen that the above expression reproduces the proper Coulomb 
limit. We again emphasise that (29) to order p’ is identical with the earlier results 
(McEnnen el a1 1976, Grant and Lai 1979, Lai 1979). 
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